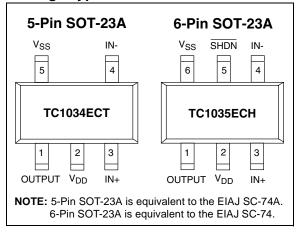


TC1034/TC1035

Linear Building Block – Single Operational Amplifiers in SOT Packages

Features

- Tiny SOT-23A Package
- Optimized for Single Supply Operation
- Ultra Low Input Bias Current: Less than 100pA
- Low Quiescent Current: 6μA (Typ.) Shutdown Mode: 0.05μA (Typ.) (TC1035)
- Shutdown Mode (TC1035)
- Rail-to-Rail Inputs and Outputs


Applications

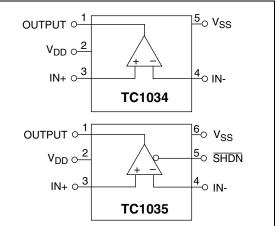
- Power Management Circuits
- Battery Operated Equipment
- Consumer Products

Device Selection Table

Part Number	Package	Temperature Range	
TC1034ECT	5-Pin SOT-23A	-40°C to +85°C	
TC1035ECH	6-Pin SOT-23A	-40°C to +85°C	

Package Types

General Description


The TC1034/TC1035 are single CMOS operational amplifiers for low power applications.

They have a typical operating supply current of 6μ A, which is constant over the supply voltage range of 1.8V to 5.5V. The Op Amp has a rail-to-rail input and output which allows operation at low supply voltages with large input and output signal swings.

An active low shutdown input, \overline{SHDN} , is available on the TC1035 and disables the op amp, placing its output in a high-impedance state. The TC1035 draws less than 0.1µA when the shutdown mode is active.

Packaged in a 5-Pin SOT-23A (TC1034) or 6-Pin SOT-23A (TC1035), these single operational amplifiers are ideal for applications requiring high integration, small size and low power.

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage	6.0V
Voltage on Any Pin (V _{SS} – 0.3V) to (V _{DD} + 0.3V)
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	-55°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1034/TC1035 ELECTRICAL SPECIFICATIONS

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
V _{DD}	Supply Voltage	1.8	_	5.5	V	
Shutdown	Input (TC1035 Only)					
V _{IH}	Input High Threshold	80% V _{DD}	_	—	V	
V _{IL}	Input Low Threshold	_	_	20% V _{DD}	V	
I _{SI}	Shutdown Input Current (Note 1)	_	—	±100	nA	
Op Amp						
lq	Supply Current, Operating (Note 1)	_	6	10	μΑ	Output Open, SHDN = V _{DD}
I _{SHDN}	Supply Current, Shutdown Mode (Note 1)	-	0.05	0.1	μA	SHDN = V _{SS}
R _{OUT} (SD)	Output Resistance in Shutdown (Note 1)	20	_	—	MΩ	SHDN = V _{SS}
C _{OUT} (SD)	Output Capacitance in Shutdown (Note 1)	_	—	5	pF	SHDN = V _{SS}
T _{SEL}	Select Time (V _{OUT} from SHDN = V _{IH}) (Note 1)	—	15	—	μsec	${\sf R}_L{=}10 k\Omega$ to ${\sf V}_{SS}$
T _{DESEL}	Deselect Time (V _{OUT} from SHDN = V _{IL}) (Note 1)	—	20	—	nsec	$R_L=10k\Omega$ to V_{SS}
A _{VOL}	Large Signal Voltage Gain	_	100	_	V/mV	$R_0 = 10k\Omega$, $V_{DD} = 5V$
V _{ICMR}	Common Mode Input Voltage Range	V _{SS} – 0.2	_	V _{DD} + 0.2	V	
V _{OS}	Input Offset Voltage (Note 1)		±100 ±0.3	±500 ±1.5	μV mV	$V_{DD} = 3V, V_{CM} = 1.5V, T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 85°C
I _B	Input Bias Current	-100	50	100	pА	$T_A = 25^{\circ}C;$ $V_{CM} = V_{DD}$ to V_{SS}
V _{OS(DRIFT)}	Input Offset Voltage Drift	_	±4	_	μV/°C	V _{DD} = 3V; V _{CM} = 1.5V
GBWP	Gain Bandwidth Product	—	90	—	kHz	V_{DD} = 1.8V to 5.5V; V_{O} = V_{DD} to V_{SS}
SR	Slew Rate	_	35	_	mV/µsec	$\begin{array}{l} C_L = 100 \text{pF}, \\ R_L = 1 M \Omega \text{ to GND}, \\ \text{Gain} = 1, \\ V_{\text{IN}} = V_{\text{SS}} \text{ to } V_{\text{DD}} \end{array}$
V _{OUT}	Output Signal Swing	V _{SS} + 0.05	_	V _{DD} - 0.05	V	$R_L = 10k\Omega$
CMRR	Common Mode Rejection Ratio	70	-	_	dB	$T_A = 25^{\circ}C; V_{DD} = 5V$ $V_{CM} = V_{DD}$ to V_{SS}
PSRR	Power Supply Rejection Ratio	80	_	_	dB	$T_A = 25^{\circ}C, V_{CM} = V_{SS}$ $V_{DD} = 1.8V \text{ to } 5V$

Note 1: TC1035 only.

TC1034/TC1035 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: $T_A = -40^{\circ}$ to +85°C and $V_{DD} = 1.8V$ to 5.5V, unless otherwise specified. Typical values apply at 25°C. Minimum and maximum values apply for $V_{DD} = 3.0V$.						
Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
I _{SRC}	Output Source Current	3	—	_	mA	V_{IN} + = V_{DD} , V_{IN} - = V_{SS} Output Shorted to V_{SS} V_{DD} = 1.8V, Gain =1
I _{SINK}	Output Sink Current	4		—	mA	V_{IN} + = V_{SS} , V_{IN} - = V_{DD} , Output Shorted to V_{DD} V_{DD} = 1.8V, Gain =1
En	Input Noise Voltage	_	10	_	μV _{PP}	0.1Hz to 10Hz
e _n	Input Noise Voltage Density	—	125	—	nV/√Hz	1kHz

Note 1: TC1035 only.

2.0 PIN DESCRIPTIONS

The description of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin No. TC1034 (5-Pin SOT-23A)	Symbol	Description	
1	OUT	Operational amplifier output.	
2	V _{DD}	Positive power supply.	
3	IN+	Operational amplifier non-inverting input.	
4	IN-	Operational amplifier inverting input.	
5	V _{SS}	Negative power supply.	

Pin No. TC1035 (6-Pin SOT-23A)	Symbol	Description
1	OUT	Operational amplifier output.
2	V _{DD}	Positive power supply.
3	IN+	Operational amplifier non-inverting input.
4	IN-	Operational amplifier inverting input.
5	SHDN	Active Low Shutdown Input (TC1035 only). A low input on this pin disables the operational amplifier and places the output terminal in a high-impedance state.
6	V _{SS}	Negative power supply.

3.0 DETAILED DESCRIPTION

The TC1034/TC1035 is one of a series of very low power, linear building block products targeted at low voltage, single supply applications. The TC1034/ TC1035 minimum operating voltage is 1.8V and maximum supply current is only 8 μ A. The TC1034 is a single op amp in a 5-Pin SOT-23A package, and the TC1035 is a single op amp with shutdown input in a 6-Pin SOT-23A package.

Microchip's op amps are internally compensated to be unity gain stable and have a typical gain bandwidth product of 90kHz with typical slew rates of 35V/msec.

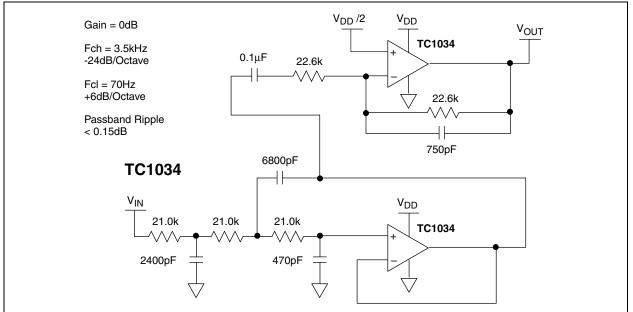
The amplifier's input range extends beyond both supplies by 200mV and the outputs will swing to within several millivolts of the supplies depending on the load current being driven.

Input offset voltage is 500μ V max at 25° C with an input bias current of less than 100pA. This makes these devices extremely suitable for precision, low power applications.

4.0 TYPICAL APPLICATIONS

The TC1034/TC1035 lends itself to a wide variety of applications, particularly in battery powered systems. It typically finds applications in power management, processor supervisory and interface circuitry.

4.1 Voice Band Receive Filter


The majority of spectral energy for human voices is found to be in a 2.7kHz frequency band from 300Hz to 3kHz. To properly recover a voice signal in applications such as radios, cellular phones and voice pagers, a low power bandpass filter that is matched to the human voice spectrum can be implemented using Microchip's CMOS op amps. Figure 4-1 shows a unity gain multipole Butterworth filter with ripple less than 0.15dB in the human voice band. The lower 3dB cut-off frequency is 70Hz (single order response), while the upper cut-off frequency is 3.5kHz (fourth order response).

4.2 Supervisory Audio Tone (SAT) Filter for Cellular

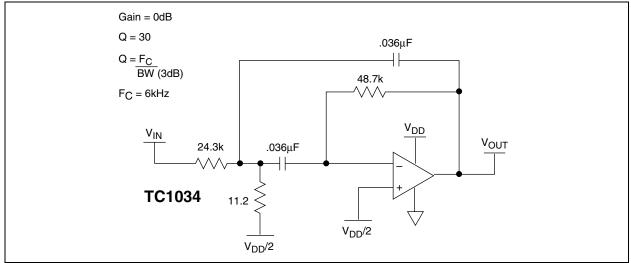
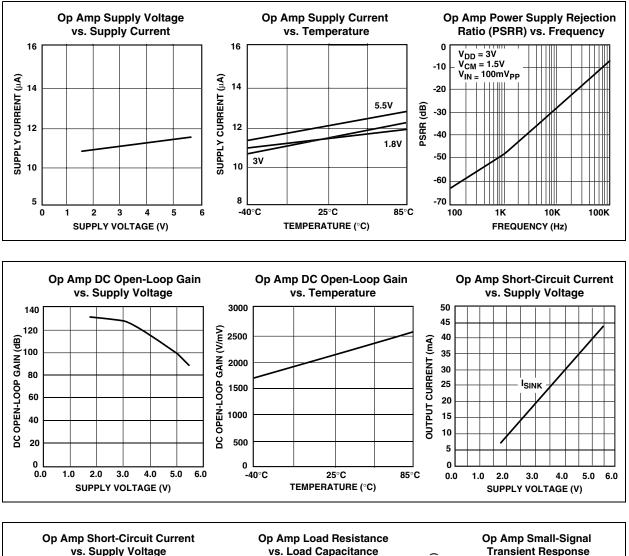
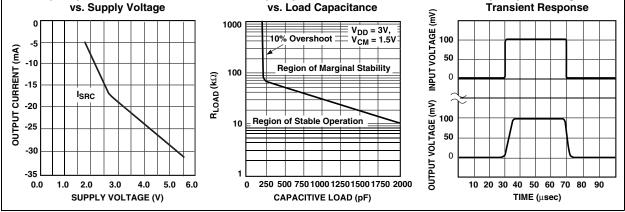
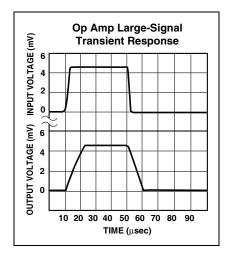

Supervisory Audio Tones (SAT) provide a reliable transmission path between cellular subscriber units and base stations. The SAT tone functions much like the current/voltage used in land line telephone systems to indicate that a phone is off the hook. The SAT tone may be one of three frequencies: 5970, 6000 or 6030Hz. A loss of SAT implies that channel conditions are impaired and if SAT is interrupted for more than 5 seconds a cellular call is terminated.

Figure 4-2 shows a high Q (30) second order SAT detection bandpass filter using Microchip's CMOS op amp architecture. This circuit nulls all frequencies except the three SAT tones of interest.

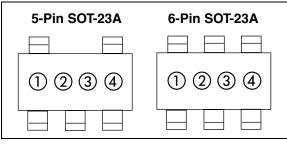
FIGURE 4-1: MULTI-POLE BUTTERWORTH VOICE BAND RECEIVE FILTER




FIGURE 4-2: SECOND ORDER SAT BANDPASS FILTER


5.0 TYPICAL CHARACTERISTICS

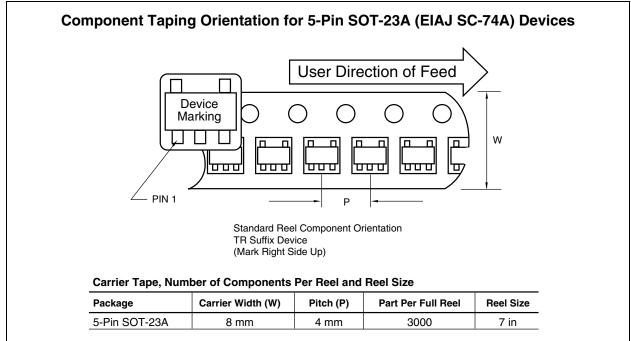
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.



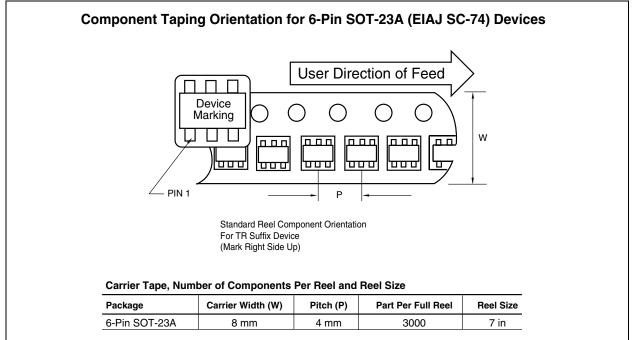
5.0 TYPICAL CHARACTERISTICS (CONTINUED)

6.0 PACKAGING INFORMATION

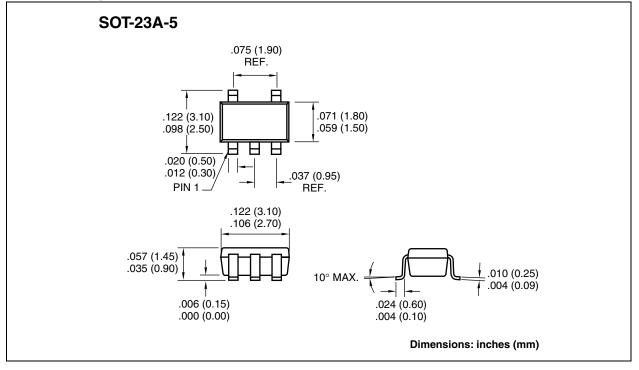
6.1 Package Marking Information

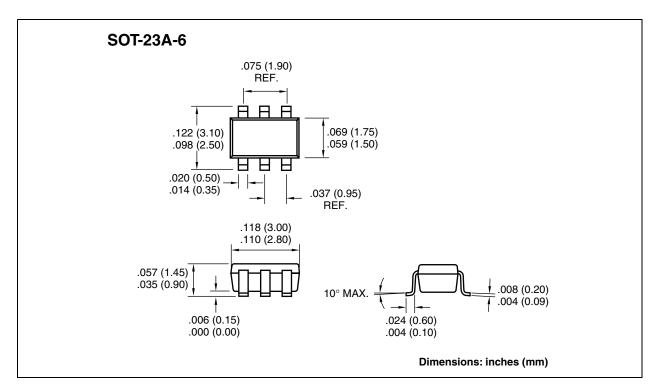

1 and 2 = part number code + temperature range and voltage

TC1034/TC1035 (V)	Code
TC1034ECT	AE
TC1035ECH	AF


3 = year and quarter code

4 = lot ID number


6.2 Taping Form



6.2 Taping Form (Continued)

6.3 Package Dimensions

TC1034/TC1035

NOTES:

=

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC1034/TC1035

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELoo[®] code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334

Tel: 248-538-2250 Fax: 248-538-2260 **Kokomo** 2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 **China - Shanghai**

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2366086 **Hong Kong**

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471-6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany** Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02

